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SUMMARY 

We describe an adaptive finite element algorithm for solving the unsteady Euler equations. The finite element 
algorithm is based on a Taylor/Galerkin formulation and uses a very fast and efficient data structure to refine 
and unrefine the grid in order to optimize the approximation. We give a general version of the method which 
can be applied to moving grids with sliding interfaces and we present the results for a transient supersonic 
calculation of rotor-stator interaction. 
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INTRODUCTION 

In 1946, von Neumann, realizing the limited capabilities of analytical methods in fluid dynamics, 
envisioned the use of numerical simulation as a powerful tool for solving complicated problems in 
fluid dynamics. Since then tremendous progress has been made in the production of very fast 
computing devices for such calculations. But it is a debatable issue as to whether or not similar 
progress has been made in the production of general and fully reliable numerical algorithms for 
fluid mechanics simulations. 

Most of the popular methods in use in fluid dynamics calculations employ a local finite difference 
approximation of the flow equations on a structured grid. The selection of an appropriate finite 
difference scheme for the problems of interest is typically based on an analysis of the performance of 
the scheme for a one-dimensional problem. The selected finite-difference scheme is then applied to 
the multidimensional case by using dimensional splitting. Such procedures are based on the 
construction of smooth, orthogonal, well-structured meshes along the directions of a system of 
generalized co-ordinates. The construction of such meshes for complicated flow domains often 
presents a formidable task. 

In this paper, we present a finite element formulation which generalizes Richtmeyer’s two-step 
Lax-Wendroff method to multidimensional problems and arbitrary cell geometries. This method 
was used under different forms by several authors,lP3 and is based on the Taylor-Galerkin ideas of 
D ~ n e a ~ , ~  and Oden.13 In contrast with most finite difference methods, which require an elaborate 
structured grid generation, our method requires a coarse initial mesh which models only the 
basic geometrical features of the flow domain. Our algorithm estimates the local error and has 
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the ability to adapt the grid in order to produce optimal approximations. 
The grid is dynamically adapted during the calculation by locally refining elements with large 

error and by unrefining 'groups' of elements with small 'group error'. When changing the structure 
of the grid a major problem of bookkeeping arises. We solve the data management problem by 
using a 'fast' data structure which permits local grid changes using a local modification of the data 
structure. The fact that we do not have to search through the whole list of elements in order to 
modify one element makes the data structure very attractive for transient adaptive calculations. 

Following this Introduction, we give a brief description of the solution algorithm, we present the 
adaptive finite element pocedures for steady-state and transient calculation and we close the paper 
with the presentation of some numerical examples including the adaptive calculation of rotor- 
stator interaction. 

FINITE ELEMENT ALGORITHMS 

We consider the motion of a perfect gas through a time-dependent two-dimensional domain 
Q( t ) c  R2, t€[O,T]. If U =U(x,t) is the vector of conservation variables with p the mass 
density, m the linear momentum and e the total energy, it satisfies the following space-time weak 
formulation. 

Find U = U(x, t ) ~  V such that 

- [:I [*,,) UT+, d o d t  + 

= 1:: 1:: ld*(o 
UT(x, r2)+(x, z2) d o  - UT(x, z,)+(x, 7,) dQ 

+'[Q(U) - U(uG-n)] dsdt, V&W. (1) Q(u):v+dodt - 

Here the sets V and W are appropriately defined,j = a+/&, Q(U) is the Euler flux tensor, 

and p(U) is the thermodynamic pressure 

p(U) = (y  - l)(e - p-'m.m/2). 

Moreover, the following notation is used: 
(3) 

We obtain a finite element approximation of (1) by partitioning the space-time domain 
D = UoCrgTR(t) into subdomains D, = Utmgrarn+,R(t) with 0 = to < t, < . . . < t, < t,+ c . . . < 
t ,  = T, by discretizing each subdomain and by using the discrete spaces of test and trial functions 
defined by the discretization. In order to discretize (1) in the case of variable domains we note that6 

where uG denotes the grid velocity. 
a+ja t  = - UG.V+, 
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Using numerical quadrature to approximate the space-time integrals in ( 1),3 we obtain the 
following two-step scheme. 

First step 

For each element S Z ,  calculate a constant element vector U:,: from 

Second step 

For each node calculate U;+' by solving the following system of equations: 

r ,- 
- A t  J na(Q$1'2 - Q:p)$ids - At J nsQ:p4ids. (6) 

aa"+ an"+ ' 
Here as denotes an elementwise averaged value of the flux and Qas is defined by 

a s  = Qap - Ua$. (7) 

Equations (6) and (7) define a two-step TG/FELW (Taylor-Galerkin/finite-element Lax- 
Wendroff) method which was introduced in the finite difference literature by Burstein' used for 
the first time in a finite element context by Oden,13 and is one of the Taylor-Galerkin methods 
introduced by Donea? studied by Baker and Kims and employed by Lohner et al.' and others2v3 
to the solution of compressible flow equations. The second step of the scheme involves a global 
calculation of the form 

M{U}"+'= { R } .  (8) 
Here M denotes the consistent mass matrix, { R} the load vector whose definition can be easily 
deduced from (6)  and { U} = [U,, U,, U3,. . . , U,IT is the global vector of nodal unknowns. The 
inversion of the mass matrix can be performed by Jacobi iteration1g8 or a preconditioned Jacobi 
conjugate gradient.3 

The TG/FELW method provides us with a fast, multidimensional time-stepping algorithm with 
high 'resolution' (high order of accuracy) in smooth regions of the flow and which applies to 
unstructured adaptive grids. Artificial diffusion is added in order to stabilize the scheme in the 
presence of d i scon t in~ i t i e s~~~  and to suppress hour-glassing modes.3 

Artificial diffusion terms prevent the occurrence of non-linear instabilities, but do not eliminate 
non-physical oscillations from the solution. In recent years, Boris, Book and have 
developed the theory of flux-corrected transport (FCT) in an attempt to correct finite-difference 
transport schemes in order to avoid non-physical oscillations in the solution. Fully multi- 
dimensional FCT schemes were presented by Zalesak," and recently Lohner et al.* presented a 
flux-corrected procedure for the TG/FELW. We now give a short exposition of the FCT- 
TG/FELW algorithm which we employed in some of our examples. 
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The FCT procedure consists in solving equation (8) by using first a 'strong' diffusion step 'OS1' to 
obtain a 'transported and diffused' solution which is free of non-physical oscillations; then an 
antidiffusion step with flux limiting" in order to steepen the solution at discontinuities. In 
particular, we have: 

Step  I :  'diffusion' s t ep  

Compute { U;,+ } from 

M, { U:; } = { R) + { V} . (9) 
Here M, denotes the lumped mass matrix and { V} denotes the vector of added diffusion, with 
nodal contributions of the form 

vi = jn( D , ~ ~  a+i aun + 

For a mesh of quadrilaterals we let 
D, = D, = cA, ,  

where c is a constant and A ,  denotes the area of the element a,. 

Step  II: 'antidiJiusion' s t ep  

Compute { U"' '} as the limit of the sequence of iterates { UFi; '}, i = 1,2,3,. . . defined by 

ML { Uri: 1 - U:,+ } = I(F[il) 9 (1 1) 

F[il= (ML - M)U;i; - V . 
Here I denotes the flux limiting function of Zalesak." 

ADAPTIVE PROCEDURES 

We now present adaptive procedures for the equations of compressible flow. The organization of 
the adaptive procedure depends on the desired result. Adaptive procedures for steady state 
problems are different from adaptive procedures for the accurate integration of the transient 
response. To initiate the adaptive procedure for a given flow domain, a coarse finite element 
mesh is defined which contains only a number of elements sufficient to model the basic geometric 
features of the flow domain (see Figure l(b)). Each element of the initial mesh is assigned a 'level' 
equal to zero. Then the initial mesh is bisected uniformly several times in order to construct an 
initial grid which has the 'group' structure. Note that when an element is refined a group of four 
elements is defined and each one of the four new elements has a level one unit higher than the 
parent element (for more details about the data structures see Reference 3). 

An adaptive procedure for steady-state solutions of the Euler equations involves the following 
steps: 

1. For a given finite element grid determine the steady-state solution. 
2. Compute error indicators 8, overall elements in the grid. Let 
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REFINE. f' 

(b) 

Figure 1. (a) Refinement and unrefinement of a four-element group and (b) a coarse initial mesh consisting of four-element 
groups 

3. Scan groups of four elements and compute 

where mk is the kth element in group m. 
4. For given tolerances CI, PER, 0 < a, /3 < 1, if 8,2 / 3 8 M A X  refine element Re by bisecting it into 

four new elements. If 6&oup 6 unrefine group m by replacing the group by a single 
new element with the nodes coincident with the corner nodes of the group. 

5. Go to step 1. 

We also present an example of an h-refinementlunrefinement strategy for transient calculation. 
The goal of this algorithm is accurately to follow the features of the transient response and to 
preserve temporal accuracy. The basic steps of the algorithm are 

(a) Advance the solution N time steps. 
(b) Do the following until no more elements can be refined: 

(1) compute the element error indicators 0, 
(2) refine all elements with 6,> P 8 M A X  

(3) integrate the last N time steps with the updated (refined) mesh 
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(4) go to (1) 
(c) Compute the element error indicators 8, and unrefine all groups with 8&o"p d ct8MAX. 

(d) Go to (a). 

We note that the 'do loop' in step (b) converges when no more elements can be refined (the 
maximum level of refinements is fixed). Although the iteration in step (b) guarantees a tfully upated' 
mesh it may lead to an expensive scheme if more than a few passes are required for convergence of 
the 'do loop'. A cheaper alternative is presented by the following 'two-pass' scheme: 

(a) Advance the solution N time steps. 
(b) Compute the element error indicators 8,. 
(c) Refine all elements with 8,> f i 8 M A p  

(d) Integrate the last N time steps with the refined mesh obtained in step (c). 
(e) Compute the element error indicators 8, and 

(1) unrefine all groups with 8&o"p < ct8,AX 

(2) refine all elements with 8,> fieMAp 
( f )  Go to step (a). 

The adaptive procedures presented above require the computation of reliable error 
indicators 8,. In our calculation we employed the following definition: 

Here pe denotes an average value of density for element Re and A ,  denotes the element area. The 
numerical examples show that our error indicator captures well the location of variable shocks. 
For alternative definitions of error indicators see References 3 and 8. 

NUMERICAL EXAMPLES 

Supersonic flow over a sharp corner 

We consider the problem of a uniform Mach 3 (y = 1.40) flow which is deflected by a 20" ramp. 
The flow enters with uniform flow conditions through the left boundary and, travelling 
horizontally with constant supersonic speed, arrives at the corner and turns discontinuously 20" 
into the direction of the other leg of the angle travelling again at constant velocity. The flow domain 
consists of two constant states which are separated by an oblique shock front attached to the 
corner tip. 

The calculation of the steady flow was performed with the adaptive scheme described above with 
constants a = 0.05, fi = 0.15. Figures 2-4 show the computed steady-state pressure contours with 
zero, one and two levels of refinement, respectively. The results were obtained using the FCT 
version of the algorithm with 'viscous' constant, c = 0.125 and C.F.L. number equal to 0.25. 

Supersonic rotor-stator interaction 

We applied the 'two-pass' version of the adaptive procedure for transient calculations to a 
problem of rotor-stator interaction.6,'2 We consider two rows of unsymmetric aerofoils which are 
shown, together with the initial discretization of the domain, in the upper part of Figure 5(a). We 
assumed that the stator and the rotor have the same number of aerofoils and we perform the 
computation on domains corresponding to one rotor and one stator aerofoil, simulating the 



Figure 2. Upper: initial coarse mesh, and lower: corresponding pressure contours for supersonic flow over a ramp 

Figure 3. Upper: first level refinement, and lower: corresponding pressure contours for supersonic flow over a ramp 
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Figure 4. Upper: second level refinement, and lower: corresponding pressure contours for supersonic flow over a ramp 

presence of the remaining aerofoils by periodic boundary conditions. We imposed supersonic 
inflow boundary conditions at the stator corresponding to a free-stream Mach number equal to 
three (y = 1.40). Boundary conditions of supersonic outflow were assumed on the right boundary of 
the rotor. In the beginning, all the aerofoils are kept fixed in order to obtain a steady flow pattern 
(lower part of Figure 5(a)) which was used as an initial condition in our calculations. After the 
steady state is reached we start moving the left row of aerofoils (stator) upward with a velocity equal 
to one-third of the inflow velocity. 

Figures 5(a)-5(i) show the computed adaptive finite element meshes and the corresponding 
density contours for various stages of the stator motion. Figure 5(a) shows the initial mesh and the 
density contours for the initial conditions. The remaining plots show the evolution of the mesh and 
the density contours for 1/4,2/4,3/4,4/4,5/4,6/4,7/4,8/4 cycles of motion. The results show that 
the error indicator captures well discontinuities of variable strength and that the mesh is 
dynamically adapted to follow the prevailing features of the solution. 
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Figure 5(a). Upper: initial mesh for dynamic rotor-stator flow interaction problem, and lower: computed initial pressure 
distribution. The next sequence of Figures shows the dynamically refined and unrefined meshes and corresponding density 

contours for various time instants measured in fractions of a rotor-stator period P 
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Figure 5(b). 114 P 
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Figure 5(c). 2/4 P 
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Figure 5(d). 3/4 P 
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Figure 5(e). 4/4 P 
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Figure 5(f). 5/4 P 
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Figure 5(g). 6/4 P 
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Figure 5(h). 7/4 P 
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Figure 5(i). 8/4 P 
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